skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Poczos, Barnabas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph Neural Networks (GNNs) have become important tools for machine learning on graph-structured data. In this paper, we explore the synergistic combination of graph encoding, graph rewiring, and graph attention, by introducing Graph Attention with Stochastic Structures (GRASS), a novel GNN architecture. GRASS utilizes relative random walk probabilities (RRWP) encoding and a novel decomposed variant (D-RRWP) to efficiently capture structural information. It rewires the input graph by superimposing a random regular graph to enhance long-range information propagation. It also employs a novel additive attention mechanism tailored for graph-structured data. Our empirical evaluations demonstrate that GRASS achieves state-of-the-art performance on multiple benchmark datasets, including a 20.3% reduction in mean absolute error on the ZINC dataset. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026